Miografía por impedancia eléctrica

Autores/as

  • Evelyn Colina Gallo
  • Carlos Augusto González Correa
  • David Alejandro Miranda Mercado

DOI:

https://doi.org/10.28957/rcmfr.v26n1a4

Palabras clave:

Bioimpedancia eléctrica, Enfermedades neuromusculares, Miografía por impedancia eléctrica.

Resumen

La miografía por impedancia eléctrica es una técnica novedosa, rápida, fácil de usar, no invasiva e indolora y que permite obtener información sobre la estructura tisular, que no es posible obtener utilizando otras técnicas de electrodiagnóstico. Si bien, aún se trata de una técnica en desarrollo, los estudios y publicaciones en el tema permiten visualizar su potencial de aplicación en la práctica clínica. El propósito del presente trabajo es la difusión de esta nueva herramienta de evaluación, a partir de la revisión de algunos conceptos básicos de bioimpedancia, que permitan la interpretación de los resultados de los estudios publicados sobre el tema, para luego considerar su uso en el diagnóstico y evaluación de ciertas patologías neuromusculares comunes.

Referencias bibliográficas

1. Morucci JP, Valentinuzzi ME, Rigaud B, Felice CJ, Chauveau N, Marsili PM. Bioelectrical Impedance Techniques in Medicine. Part I:Bioimpedance Measurement. Crit Rev Biomed Eng. 1996; 24(4-6): 223-351.

2. Grimnes S, Martinsen Ø. Bioimpedance and bioelectricity basics. Second Edi. Elsevier Ltd; 2008.

3. Rutkove SB. Electrical Impedance Myography: Background, Current State, and Future Directions Seward. Muscle Nerve. 2009; 40(6): 936-46.

4. Grimnes S, Martinsen Ø. Bioimpedance and bioelectricity basics. London: Academic Press; 2000. p. 223-24.

5. Schwan HP, Kay CF. Specific Resistance of Body Tissues. Circ Res. 1956 Nov 1; 4(6): 664-70.

6. Pethig R, Kell DB. The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol. 1987; 32(8): 933-70.

7. Honq J, Kandasamy K, Maritmuthu M, Choi C, Kim S. Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell
study. Analyst. 2011; 136(2): 237-45.

8. Heileman K, Daoud J, Tabrizian M. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Biosens Bioelectron [Internet]. Elsevier; 2013 Nov 15 [cited 2014 Aug 14]; 49: 348-59. Available from: http://www.ncbi. nlm.nih.gov/pubmed/23796534

9. Ivorra A. Bioimpedance monitoring for physicians: an overview. Cent Nac Microelectrònica Biomed … [Internet]. 2003 [cited 2014 Sep 23]; 2002: 1-35. Available from: http://www.cnm.es/~mtrans/PDFs/Bioimpedance_for_physicians_rev1.pdf.

10. Zhu F, Schneditz D, Kaufman AM, Levin NW. Estimation of body fluid changes during peritoneal dialysis by segmental bioimpedance analysis. Kidney Int [Internet]. 2000 Jan; 57(1): 299-306. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10620212.

11. Fallert MA, Mirotznik MS, Downing SW, Savage EB, Foster KR, Josephson ME, et al. Myocardial Electrical-Impedance MappingOf Ischemic Sheep Hearts And Healing Aneurysms. Circulation [Internet]. 1993; 87(1): 199-207. Available from: <Go to ISI>://A1993KG43400023

12. Harms J, Schneider A, Baumgartner M, Henke J, Busch R. Diagnosing acute liver graft rejection: experimental application of an implantable telemetric impedance device in native and transplanted porcine livers. Biosens Bioelectron. 2001; 16(3): 169-77.

13. Malich A, Böhm T, Facius M, Kleinteich I, Fleck M, Sauner D, et al. Electrical impedance scanning as a new imaging modality in breast cancer detection—a short review of clinical value on breast application, limitations and perspectives. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2003; 497(1): 75-81.

14. Miranda-Mercado DA, Barrero-Pérez JG, Echeverri-Perico JH. Estudio piloto de detección temprana de cáncer de cuello uterino basado en espectroscopía de impedancia eléctrica. SaludUIS. 2006; 38.

15. Aberg P. Skin cancer as seen by electrical impedance. Tesis. Karolinska Institute; 2004.

16. Fuller N, Elia M. Potential use of bioelectricalimpedance of the “whole body” and of body segments for the assessment of body composition: comparison with densitometry and anthropometry. Eur J Clin Nutr. 1989; 43: 779-91.

17. Lukaski HC, Bolonchuk WW, Hall CB, Siders WA. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol. 1986; 60(4): 1327-32.

18. Lukaski HC, Johnson E, Bolonchuk WW, Lykken G. Assessment impedance of fat-free mass using bioelectrical measurements of
the human body. Am J Clin Nutr. 1985; 41: 810-7.

19. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr [Internet]. 2004 Oct [cited 2013 May 23]; 23(5): 1226-43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15380917

20. Zhu F, Kuhlmann MK, Kotanko P, Seibert E, Leonard EF, Levin NW. A method for the estimation of hydration state during hemodialysis using a calf bioimpedance technique. Physiol Meas. 2008 Jun; 29(6): S503-16.

21. Codognotto M, Piazza M, Frigatti P, Piccoli A. Influence of localized edema on wholebody and segmental bioelectrical impedance. Nutrition. 2008 Jun; 24(6): 569-74.

22. Ward L, Winall A, Insenring E. Assessment of bilateral lymphedema by bioelectrical impedance spectroscopy. Int J Gynecol Cancer. 2011; 21: 409-18.

23. Lukaski HC, Moore M. Bioelectrical impedance assessment of wound healing. J Diabetes Sci Technol [Internet]. 2012 Jan; 6(1): 209-12. Available from: http://www.pubmedcentral.nih.gov/articlerender. fcgi?artid=3320840&tool=pmcentrez&rendertype=abstract.

24. Chang C-I, Chen C-Y, Huang K-C, Wu C-H, Hsiung CA., Hsu C-C. Comparison of three BIA muscle indices for sarcopenia screening in old adults. Eur Geriatr Med [Internet]. 2013 Jun [cited 2013 Jul 23]; 4(3): 145-9. Available from: http://linkinghub. elsevier. com/retrieve/pii/S187876491 2006882

25. Nescolarde L, Yanguas J, Medina D, Rodas G, Rosell-Ferrer J. Assessment and followup of muscle injuries in athletes by
bioimpedance: preliminary results. Conf Proc IEEE Eng Med Biol Soc [Internet]. 2011 Jan; 2011: 1137-40. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/22254515

26. Nescolarde L, Yanguas J, Lukaski HC, Alomar X, Rosell-Ferrer J, Rodas G. Localized bioimpedance to assess muscle injury. Physiol Meas. 2013 Feb; 34: 237-45.

27. Aaron R, Shiffman CA. Using Localized Impedance Measurements to Study Muscle Changes in Injury and Disease. Ann N Y Acad Sci. 2000; 904: 171-80.

28. Rutkove SB, Aaron R, Shiffman CA. Localized bioimpedance analysis in the evaluation of neuromuscular disease. Muscle Nerve. 2002; 25: 390-7.

29. Esper GJ, Shiffman CA., Aaron R, Lee KS, Rutkove SB. Assessing neuromuscular disease with multifrequency electrical impedance myography. Muscle and Nerve. 2006; 34(5): 595-602.

30. Tarulli AW, Chin AB, Lee KS, Rutkove SB. Impact of skin-ubcutaneous fat layer thickness on electrical impedance myography measurements: an initial assessment. Clin Neurophysiol [Internet]. 2007 Nov[cited 2013 Jul 23]; 118(11): 2393-7. Available from: http://www.pubmed central.nih.gov/articlerender.fcgi?artid=2080664&tool=pmcentrez&rendertype=abstract

31. Rutkove SB, Caress JB, Cartwright MS, Burns TM, Warder J, David WS, et al. Electrical impedance myography as a biomarker to assess ALS progression. Amyotroph Lateral Scler. 2012; 13(5): 439-45.

32. Rutkove SB, Shefner JM, Gregas M, Butler H, Caracciolo J, Lin C, et al. Characterizing spinal muscular atrophy with electrical impedance myography. Muscle and Nerve. 2010; 42(6): 915-21.

33. Rutkove SB, Darras B. Electrical impedance myography for the assessment of children with muscular dystrophy: a preliminary study. J Phys Conf Ser. 2013; 434(1).

34. Tarulli AW, Duggal N, Esper G, Garmirian L, Fogerson P, Lin C, et al. Electrical impedance myography in the assessment of disuse atrophy. Arch Phys Med Rehabil [Internet]. 2009 [cited 2013 Dec 2]; 90(10): 1806-10. Available from: http://www.sciencedirect.com/science/article/pii/S0003999309003712

35. Shiffman CA. Circuit Modelinf of the Electrical Impedance Part III: Disuse Following Bone Fracture. Physiol Meas. 2013; 34(5): 487-502.

36. Rutkove SB, Esper GJ, Lee KS, Aaron R, Shiffman CA. Electrical impedance myography in the detection of radiculopathy. Muscle and Nerve. 2005; 32(3): 335-41.

37. Ching CT-S, Chen Y-C, Lu L-H, Hsieh PF, Hsiao C-S, Sun T-P, et al. Characterization of the muscle electrical properties in low back pain patients by electrical impedance myography. PLoS One [Internet]. 2013; 8(4): e61639. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3632516&tool=pmcentrez&rendertype=abstract

38. Lungu C, Tarulli AW, Tarsy D, Mongiovi P, Vanderhorst VG, Rutkove SB. Quantifying muscle asimmetries in cervical dystonia with electrical impedance: A preliminary assessment. Clin Neurophysiol. 2011; 122(5): 1027-31.

39. Clemente F, Romano M, Bifulco P, Cesarelli M. Study of muscular tissue in different physiological conditions using electrical
impedance spectroscopy measurements. Biocybern Biomed Eng [Internet]. Korea Institute of Oriental Medicine; 2014; 34(1): 4-9. Available from: http://dx.doi.org/10.1016/j.bbe.2013.10.004

40. Caicedo-Eraso JC, González-Correa CH, González-Correa CA. Use of electrocardiogram (ECG) electrodes for Bioelectrical Impedance Analysis (BIA). J Phys Conf Ser. 2012 Dec 20; 407: 012008.

41. Rutkove SB, Fogerson P, Garmirian L, Tarulli AW. Reference Values for 50 kHz Electrical Impedance Myography. Muscle Nerve. 2008; 38(3): 1128-32.

42. Cole KS, Cole RH. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J Chem Phys [Internet]. 1941; 9(4): 341. Available from: http://scitation.aip.org/content/aip/journal/jcp/9/4/10.1063/1.1750906

43. Narayanaswami P, Spieker A, Mongiovi P, Keel J, Muzin S, Rutkove SB. Utilizing a handheld electrode array for localized muscle impedance measurements. Muscle Nerve. 2012; 46(2): 257-63.

44. Geisbush TR, Visyak N, Madabusi L, Rutkove SB, Darras BT. Inter-session reliability of electrical impedance myography in children in a clinical trial setting. Clin Neurophysiol [Internet]. International Federation of Clinical Neurophysiology; 2014; Available from: http://linkinghub. elsevier.com/retrieve/pii/S1388245714008098

45. Fatt P. an Analysis of the Transverse Electrical Impedance of Striated Muscle. Proc R Soc Lond B Biol Sci. 1964; 159: 606-51.

46. Garmirian L, Chin AB, Rutkove SB. Discriminating neurogenic from myopathic disease via measurement of muscle anisotropy. Muscle Nerve. 2009; 39(1): 16-24.

47. Shiffman CA, Rutkove SB. Circuit Modeling of the Electrical Impedance: Part II Normal Subjects and System Reproducibility. Physiol Meas. 2013; 34(2): 223-35.

48. Li J, Sung M, Rutkove SB. Electrophysiologic Biomarkers for Assessing Disease Progression and the Effect of Riluzole in SOD1
G93A ALS Mice. PLoS One. 2013; 8(6): 1-7.

49. Ahad M, Fogerson P, Rosen G, Narayanaswami P, Rutkove SB. Electrical characteristics of rat skeletal muscle in immaturity, adulthood, and after sciatic nerve injury and their relation to muscle fiber size. Physiol Meas. 2009; 30(12): 1415.

50. Li J, Jafarpoor M, Bouxsein M, Rutkove SB. Distinguishing neuromuscular disorders based on the passive electrical material
properties of muscle. Muscle Nerve [Internet]. 2014; (April 2014): 49-55. Available from: http://www.ncbi.nlm. nih.gov/pubmed/24752678

Cómo citar

1.
Colina Gallo E, González Correa CA, Miranda Mercado DA. Miografía por impedancia eléctrica. Rev. Colomb. Med. Fis. Rehabil. [Internet]. 24 de octubre de 2016 [citado 28 de marzo de 2024];26(1):38-49. Disponible en: https://revistacmfr.org/index.php/rcmfr/article/view/169

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Número

Sección

Revisión sistemática
QR Code