Papel del Sistema Opioide Sobre el Procesamiento de la Memoria Evidencia clínica y experimental

Autores/as

  • Mauricio Orlando Navas Mesa Laboratorio de Neurofisiología y Conducta. Instituto de Neurociencias de Castilla y León. Universidad de Salamanca (España).
  • Roger López Bellido Laboratorio de Bioquímica y Biología Molecular. Instituto de Neurociencias de Castilla y León. Universidad de Salamanca (España).

Palabras clave:

opioides, aprendizaje, memoria, plasticidad neuronal

Resumen

El sistema opioide –SO- (agonistas, antagonistas y sus receptores) tiene un importante papel en el procesamiento cognitivo. Los cambios en la eficiencia sináptica de aquellas estructuras cerebrales que participan en el procesamiento de la información explican parte de las bases neurobiológicas de la memoria. El SO afecta considerablemente la función neuronal y la eficacia sináptica de dichas estructuras. Los fármacos opiáceos empleados en la práctica clínica cotidiana, tienen repercusiones positivas y negativas sobre los diferentes tipos de memoria. Los agonistas opioides pueden causar un deterioro en el procesamiento de diferentes tipos de memoria; por otro lado, el efecto de los antagonistas opioides es mucho más complejo. En muchos de los modelos de experimentación, el antagonismo de los receptores opioides puede tener un efecto potenciador de la memoria y facilitador de la actividad sináptica, efecto que incluso es capaz de revertir diferentes procedimientos amnésicos. Sin embargo, la actividad tónica del SO es relevante para los procesos de aprendizaje y memoria. Por esto mismo, el bloqueo de algunos receptores opioides ya sea por métodos farmacológicos o genéticos, produce alteración de las formas de plasticidad sináptica involucradas con el procesamiento de la información y deteriora diferentes tipos de memoria. Los estudios  in vitro en modelos animales y los clínicos indican que los agonistas y antagonistas opioides producen cambios en la actividad sináptica, plasticidad y excitabilidad neuronal en estructuras que participan en el procesamiento de la memoria, lo cual se correlaciona con los trastornos cognitivos producidos por dichos fármacos en pacientes tratados de manera crónica.

Referencias bibliográficas

1. Aguado-Aguilar L. Aprendizaje y Memoria. Revista deNeurologia 2001; 32(4): 373-381.
2. Alexander SPH, Mathie A, Peters JA. Guide to receptors and chanels (GRAC). 3ra edicion. British Journal of Pharmacology 2008; 153 (s2): S1-S209.
3. Arner S, Rawal N, Gustafsson LL. Clinical experience of long-term treatment with epidural and intrathecal opioids – a nationwide survey. Acta Anaesthesiologia Scandinavica 1988; 32: 253–259.
4. Ballantyne JC, Mao J. Opioide therapy for chronic pain. New England Journal of Medicine 2003; 349 1943-1953.
5. Bie B, Pan ZZ. Trafficking of central opioide receptors and descending pain inhibition. Molecular Pain 2007; 3:37.
6. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus.Nature 1993; 361:31–39.
7. Bodnar R, Klein G.E. Endogenous opiates and behavior: 2005. Peptides 2006; 27(12):3391-478
8. Bodnar RJ. Endogenous opiates and behavior: 2006. Peptides 2007; 28: 2435- 2513.
9. Bramham CR, Sarvey JM. Endogenous activation of mu and and delta 1 opioid receptors is required for long-term potentiation induction in the lateral perforant path: dependence on GABAergic inhibition. The Journal of Neuroscience 1996; 16:8123–8131.
10. Breindl A, Derrick BE, Rodriguez SB, Martinez Jr JL. Opioid receptor-dependent long-term potentiation at the lateral perforant path- CA3 synapse in rat hippocampus. Brain Research Bulletin 1994; 33:17–24.
11. Byrne JH,Kandel ER. Presynaptic facilitation revisited: state and time dependence. The Journal of Neuroscience 1995; 16, 425–435.
12. Chen YL, LawPY, Loh HH. Action of NF- Bon the delta opioid receptor gene promoter. Biochemical and Biophysical Research Communications 2007; 352; 818-822.
13. Chu YC, Lin SM, Hsieh YC, Chan KH, TsouMY. Intraoperative administration of tramadol for postoperative nurse-controlled analgesia resulted in earlier awakening and less sedation than morphine in children after cardiac surgery. Anesthesia Analgesia 2006; 102: 1668-1673.
14. Clopath C, Ziegler L, Vasilaki E, Busing L, Gerstner W. Tag-trigger-consolidation: a model of early and late long-termpotentiation and depresion. PLoS Computational Biology 2008; 4 (12): 1-14.
15. Cohen NJ, Poldrack RA, Eichenbaum H. Memoryfor itemsandmemory for relations in the procedural/declarative memory framework.Memory1997; 5: 131-78.
16. Conrad CD. The relationship between acute glucocorticoid levels and hippocampal function depends upon task aversiveness and memory processing stage. Nonlinearity in Biology, Toxicology, Medicine. 2005; 3(1):57-78.
17. Costanzi M, Battaglia M, Rossi-Arnaud Cm Cestari V, Catellano C. Effects of anandamide and morphine combinations on memory consolidation in CD1 mice: involvement of dopaminergic mechanisms. Neurobiology of Learning and Memory 2004; 81:144-149.
18. Darland T, Heinricher MM, Grandy DK. Orphanin FQ/nociceptin: a role in pain and analgesia, but so much more. Trends in Neuroscience 1998; 21(5):215-21.
19. Daumas S, Betourne A, Halley H,Wolfer DP, Lipp HP, Lassalle JM, Frances B. Transient activation of the CA3 Kappa opioid system in the dorsal hippocampus modulates complex memory processing in mice. Neurobiology of Learning and Memory 2007; 88: 94-103.
20. Dere E, Huston JP, De Souza Silva MA. The Pharmacology Neuroanatomy and neurogenetic of one-trial object recognition in rodent s . Neuros c i e n c e s and biobehavioral reviews 2007; 31(5):673-704.
21. Do VH, Martinez CO, Martinez JL Jr, Derrick BE. Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo. Journal of Neurophysiology 2002 2:669 78
22. Farhadinasab A, Shahidi S, Najafi A, Komaki A. Role of naloxone as an exogenous opioid receptor antagonist in spatial learning and memory of female rats during the estrous cycle. Brain research 2009; 1257: 65-74.
23. Firestone LL, Gyulai F, Mintun M, Adler LJ, Urso K, Winter PM. Human brain activity response to fentanyl imaged by positron emission tomography. Anesthesia and Analgesia 1996; 82(6): 1247-51.
24. Foley, K.M. Mi s conceptions and controversies regarding the use of opioids in cancer pain. Anticancer Drugs 1995; 6 (suppl 3): 4–13.
25. Friswell J, Phillips C, Holding J, Morgan CJ, Brandner B, Curran HV. Acute effects of opioids on memory functions of healthy men and women. Psychopharmacology. 2008; 198(2):243-50.
26. Gallagher, M. king, R. Young, N. Opiate Antagonists Improve Spatial Memory. Science 1983; 221(4614):975-6.
27. Gourlay GK. Advances in opioid pharmacology. Support Care Cancer 2005; 13:153-159.
28. Grigson PS, Hajnal A. Once is too much: conditioned changes in accumbens dopamine following a single saccharinmorphine pairing. Behav Neurosci 2007; 121:1234–42.
29. Hammond C. Cellular and Molecular Neurobiology. 2a ed. Elsevier Science & Technology Books. France. 2001.
30. Harlan RE, Song DD, Prenatal morphine treatment and the development of the striatum.Regul. Pept. 1994; 54:117–118.
31. Herrero MJ, Rodriguez RE. Bioinformatic analysis of the origin, sequence and diversification of μ opioide receptors in vertebrates. Molecular phylogenetics and evolution 2008; 49: 877-892.
32. Higgins GA, KewJN, Richards JG, Takeshima H, Jenck F, Adam G, Wichmann J, Kemp JA, Grottick AJ. A combined pharmacological and genetic approach to investigate the role of orphanin FQ in learning and memory. The European Journal of Neuroscience 2002; 15(5): 911-2.
33. Huston J, Teke EK, De Souza SilvaM, Dere E. Wistar rats show episodic-like memory for unique experiences. Neurobiology of Learning and Memory 2006; 85(2):173- 182
34. Itoh J, Ukai M, Kameyama T. Dynorphyn A- (1–13) potently improves the impairment of spontaneous alternation performance induced by the mu-selective opioid receptor agonist DAMGO in mice. Journal o f Pharmacol o g y Experiment a l Therapeutic 1994; 269: 15–21.
35. Izquierdo I. The role of an endogenous amnesic mechanism mediated by brain beta-endorphin in memory modulation. Brazilian Journal of Medicine and Biological Research 1982; 15(2-3):119-34.
36. Jaffard R, Etchamendy N, Desmedt A, Krazem A, Cortes-Torrea C, Marighetto A. An animal model of human declarative (relational) memory and of its dysfunction. Therapie 2000; 55(4): 477-485.
37.Jamot L, Matthes HWD, Simonin F. Kieffer BL, Roder JC. Differential involvement of the Mu and Kappa opioide receptors in spatial learning. Genes, Brain and Behavior 2003; 2: 80–92.
38. Kamboj SK, Tookman A, Jones L, Curran HV. The effects of immediate-release morphine on cognitive functioning in patients receiving chronic opioid therapy in palliative care. Pain 2005;117(3):388-95
39. Kandel ER, Jessell TM, Schwartz JH. Neurociencia y conducta. Espana: Prentice Hall; 1996.
40. Katzen-Perez KR, Jacobs DW, Lincoln A, Ellis RJ. Opioid blockade improves human recognitionmemory following physiological arousal. Pharmacology, Biochemistry and Behavior 2001; 70(1):77-84.
41. Kesner R, Martinez JL. Neurobiology of learning and Memory. 2a ed. EEUU: Elsevier ; 2007.
42. Kieffer BL. Opioids: first lessons from knockout mice. Trends in Pharmacological Science 1999; 20:19-26.
43. Kuzmin A, Madjid N, Terenius L, Ogren SO, Bakalkin G. Big dynorphin, a prodynorphinderived peptide produces NMDA receptormediated effects on memory, anxioloticlike and locomotor behavior in mice. Neuropsychopharmacology 2006; 31: 1928-1937.
44. Lee YS, Bailey CH, Kandel ER, Kaang BK. Transcriptional regulation of long-term memory in the marine snail Aplysia. Molecular Brain 2008; 17:1(1):3.
45. Leppa M, Korvenoja A, Carlson S, Timonen P, Martinkauppi S, Ahonen J, Rosenberg PH, Aronen HJ, Kalso E. Acute opioid effects on human brain as revealed by functional magnetic resonance imaging. Neuroimage 2006; 31(2):661-669.
46. Lupica CR, Proctor WR, Dunwiddie TV. Dissociation of mu and delta opioid receptor-mediated reductions in evoked and spontaneous synaptic inhibition in the rat hippocampus in vitro. Brain Research 1992; 593(2):226-38.
47. Mao J, Price DD, Mayer DJ. Mechanisms of hyperalgesia and morphine tolerance: a current view of their possible interactions. Pain 1995; 6: 259–274.
48. Martin KC, Kandel ER. Cell adhesion molecules, CREB, and the formation of new synaptic connections. Neuron 1996; 17: 567–570.
49. Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annual Reviewof Neuroscience 2000; 23:649-711
50.Martin TJ, Eisenach JC. Pharmacology of opioid and Nonopioid analgesic in chronic pain states. The journal of pharmacology and experimental therapeutics 2001; 299:811-817.
51.McGaugh J. Hormonal influences on memory. Annual Review of Psychology 1983; 34: 297-323.
52.McQuiston AR. Effects of mu-opioid receptor modulation on GABA B receptor synaptic unction in hippocampal CA1. Journal of Neurophysiology 2007; 97(3):2301-11.
53.McQuiston AR. Layer selective presynaptic modulation of excitatory inputs to hippocampal cornu Ammon 1 by mu-opioid receptor activation. Neuroscience 2008;151(1):209-221.
54.Meilandt W J, Rodriguez E, Harvey S, Martinez J. Role of Hippocampal CA3 Opioid Receptors in Spatial Learning and Memory. The Journal of Neuroscience 2004; 24(12):2953-62.
55.Meilandt WJ, Yu GQ, Chin J, Roberson ED, Palop JJ, Wu T, Scearce-Levie K, Mucke LJ Enkephalin elevations contribute to neuronal and behavioral impairments in a transgenic mouse model of Alzheimer's disease. Neuroscience 2008; 28(19):5007-17.
56.Milner B, Squire LR, Kandel E. Cognitive Neuroscience and the Study of Memory. Review. Neuron 1998; 20: 445–468.
57.Morris BJ, Johnston HM. A role for hippocampal opioids in long-term functional plasticity. Trends in Neuroscience 1995; 18: 350-355.
58.Muscoli C, Cuzzocrea S, Ndengele MM, Mollace V, Porreca F, Fabrizi F, Esposito E, Masini E, Matuschak GM, Salvemini D. Therapeutic manipulation of peroxynitrite attenuates the development of opiateinduced antinociceptive tolerance in mice. The Journal of Clinical Investigation 2007; 117(11): 3530–3539.
59.Navas Mauricio O. Efectos del bloqueo de receptores opiaceos sobre los cambios inducidos por el estres agudo en la memoria de reconocimiento de objetos. Tesis de
Maestria en Fisiologia. Colombia: Universidad Nacional de Colombia; 2008.
60.Nelson. R. Psicoendocrinologia. Bases hormonales de la conducta. Barcelona. Ariel SA. 1996.
61. Ossipov MH, Lai J, King T, Vanderah WT, Malan TP, Hruby VJ, Porreca F. Antinociceptive and nociceptive actions of opioids. Journal of Neurobiology 2004; 61(1): 126–148.
62. Pan ZZ. -Opposing actions of the –opioid receptor. Trend in Pharmacological Science 1998; 19 (3): 94-98.
63. Pita G. Disturbance in recent memory and behavioral changes caused by the treatment with intraventricular morphine administration (IVM) in sever cancer pain.
Human Psychopharmacology: Clinical & Experimental 1998; 13: 315-323.
64. Prudic J, Fitzsimons L, Nobler MS, Sackeim HA. Naloxone in the prevention of the adverse cognitive effects of ECT: a withinsubject, placebo controlled study. Neuropsychopharmacology 1999; 21(2):285-93.
65. Rapeli P, Fabritius C, Alho H, Salaspuro M, Wahlbeck K, Kalska H. Methadone vs. buprenorphine/naloxone during early opioid substitution treatment: a naturalistic comparison of cognitive performance relative to healthy controls. BMCClinical Pharmacology 2007;12;7:5
66. Robertson L.T.Memory and the Brain. Journal of Dental Education 2002; 66 (1): 30-42.
67. Sajadi AA, Samaei SA, Rashidy-Pour A. Blocking effects of intra-hippocampal n a l t rexone m i c ro i n j e c t i o n s on glucocorticoid-induced impairment of spatial memory retrieval in rats. Neuropharmacology 2007; 52:347-354.
68. SalveminiD, Neumann WL. Peroxynitrite: a strategic linchpin of opioid analgesic tolerance. Trends in Pharmacological Sciences 2009; 30 (4): 194-202.
69. Sanchez-Simon FM, Rodriguez RE. Developmental expression and distribution of opioid receptors in zebrafish. Neuroscience 2008; 151:129-137.
70. Sandin J, Ogren SO, Terenius L. Endomorphin-2 but not Leu-enkephalin modulates spatial learning when microinjected in the CA3 region of the rat hippocampus. Neuroreport 2000; 11: 3659–3662.
71. Sara S.J Retrieval and Reconsolidation: Toward a Neurobiology of Remembering. Learning andMemory2000; 7(2):73-84.
72. SavicM, Obradovic D, Ugresic ND, Bokonjic D. Memory Effects of Benzodiazepines: Memory Stages and Types versus Binding- Site Subtypes Neural Plasticity 2005; 12 (4).
73. Andre Seidenberg, Ueli Honegger, Ilse Gebele. Metadona, heroina y otros opioides: Manual para un tratamiento ambulatorio de mantenimiento con opioides. Escuela Andaluza de Salud Publica. EdicionesDiaz de Santos; 2000.
74. Snyder SH, Pasternak GW. Historical review: Opioid receptors. Trends in Pharmacological Sciences 2003; 24(4): 198-205.
75. Tramullas M, Martinez-Cue C, Hurle MA. Chronic administration of heroin to mice produces up-regulation of brain apoptosisrelated proteins and impairs spatial learning and memory. Neuropharmacology 2008; 54(4):640-52.
76. Tramullas M, Martinez-Cue C, Hurle MA. Chronic methadone treatment and repeated withdrawal impair cognition and increase the expression of apoptosisrelated proteins in mouse brain. Psychopharmacology 2007; 193(1):107-20.
77. Trescot AM, Datta S, Lee M, Hansen H. Opioid Pharmacology. Pain Physician 2008; 11:s133-s153.
78. Treves A, Rolls ET. Computational analysis of the role of the hippocampus in memory. Hippocampus1994;4:374–391
79. Tsien JZ. Linking Hebb's coincidencedetection to memory formation. Current Opinion un Neurobiology 2000; 10:266-73.
80. Vargas-Perez H, Ting-A-Kee RA, Heinmiller A, Sturgess JE, van der Kooy D. A test of the opponent-process theory of motivation using lesions that selectively block morphine reward. European Journal of Neuroscience 2007; 25:3713–8.
81. Walhovd KB, Moe V, Slinning K, Due- Tonnessen P, Bjornerud A, Dale AM, Van der Kouwe A, et al.Volumetric cerebral characteristics of children exposed to opiates and other substances in utero. NeuroImage 2007; 36: 1331-1344.
82. Williams SH, Johnston D () Actions of endogenous opioids on NMDA receptorindependent long-term potentiation in area CA3 of the hippocampus. Journal of Neuroscience 1996; 16:3652–3660
83. Yang Y, Zheng X,Wang Y, Cao J, Dong Z, Cai J, Sui N, Xu L. Stress Enables Synaptic Depression in CA1 Synapses by Acute and Chronic Morphine: Possible Mechanisms for Corticosterone on Opiate Addiction. The Journal of Neuroscience 2004; 24(10):2412–2420
84. Yamamoto T, Nozaki-Taguchi N, Sakashita Y, Kimura S. Nociceptin/orphanin FQ: role in nociceptive information processing. Progress in Neurobiology 1999; 57(5):527- 535.
85. Yanai J, Huleihel R, Izrael M, Metsuyanim M, Shahak H, Vatury O, Yaniv SP. Functional changes after prenatal opiate exposure related to opiate receptors' regulated alterations in cholinergic innervation, International Journal of Neuropsychopharmacoly 2003; 6:253–265.
86. Yang L, Sun ZS, Zhu YP. Proteomic analysis of rat prefrontal cortex in three phases of morphine-induced conditioned place preference. Journal of Proteome Research 2007; 6:2239–47.
87. Zhao H, Xu H, Xu X. Effects of naloxone on the long-term potentiation of EPSPs from the pathway of Schaffer collateral to CA1 region of hippocampus in aged rats with declined memory. Brain Research 2004; 996(1):111-6
88. Zhao M, Zhang ZY, Zhai HF, Qiu Y, Lu L. Effects of stress during reactivation on rewarding memory. Neuroreport 2007; 18:1153–6.

Cómo citar

1.
Navas Mesa MO, López Bellido R. Papel del Sistema Opioide Sobre el Procesamiento de la Memoria Evidencia clínica y experimental. Rev. Colomb. Med. Fis. Rehabil. [Internet]. 19 de abril de 2012 [citado 29 de marzo de 2024];19(2):55-68. Disponible en: https://revistacmfr.org/index.php/rcmfr/article/view/38

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Número

Sección

Revisión sistemática
QR Code

Algunos artículos similares: