Linear and nonlinear analysis of short-term heart rate variability in patients with coronary artery disease

Authors

DOI:

https://doi.org/10.28957/rcmfr.315

Keywords:

Coronary artery disease, Autonomic Nervous System, Heart Rate, Entropy, Bayes’ Theorem

Abstract

Introduction. The short-term heart rate variability (HRV) is a physiological parameter that is associated with the cardiovascular health and has been used in the management of coronary artery disease (CAD) to characterize the cardiovascular dynamics and to evaluate the effect of therapeutic interventions.

Objectives. To characterize the short-term HRV in patients with CAD through linear and nonlinear measurements, and to evaluate the effect of potential third variables on the HRV in the study group.

Methods. Analytical observational study in which the clinical records of 24 patients with CAD and a mean age of 60,1±7,11 years were reviewed. The RR intervals at rest were recorded using a Polar H7 monitor during 15 minutes. The linear analysis was performed with parameters in the time and frequency domains, and the nonlinear, with the sample entropy (SampEn) and the Poincaré plot; autonomic indexes were also included and Bayesian inference was performed to evaluate the effect of third variables and the correlation between the HRV indexes.

Results. The linear analysis showed a decrease in the HRV, beat to beat, and the nonlinear evidenced a decrease in the overall variability. The autonomicindexessuggested a positive sympathetic-vagal balance, with a trend towards increased sympathetic and decreased parasympathetic activity. SampEn was the parameter that presented the lowest  dispersion, and the spectral indexesin logarithmic units showed aweak correlation with some metabolic variables.

Conclusion. The HRV allows us to characterize the cardiovascular dynamics in patients with CAD, including the autonomic balance; furthermore, the nonlinear approximation offers a sensitive and potentially more robust measurement alternative. However, the effect of some metabolic variables on the association between HRV and independent factors should be considered.

References

Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, et al. Heart rate variability Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17(3):354-81. Disponible en: https://doi.org/10.1093/oxfordjournals.eurheartj.a014868

Hayano J, Yuda E. Pitfalls of assessment of autonomic function by heart rate variability. J Physiol Anthropol. 2019;38(3). Disponible en: https://doi.org/10.1186/s40101-019-0193-2

Illigens BMW, Gibbons CH. Autonomic testing, methods and techniques. Handb Clin Neurol. 2019;160:419-33. Disponible en: https://doi.org/10.1016/B978-0-444-64032-1.00028-X

McCraty R, Shaffer F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health risk. Glob Adv Health Med. 2015;4(1):46-61. Disponible en: https://doi.org/10.7453/gahmj.2014.073

Shaffer F, Ginsberg JP. An Overview of Heart Rate variability Metrics and Norms. Front Public

Health. 2017;5:258. Disponible en: https://doi.org/10.3389/fpubh.2017.00258

Kuusela T. Methodological aspects of heart rate variability analysis. En: Kamath MV, Watanabe MA, Upton ARM, editores. Heart Rate Variability (HRV) Signal Analysis. Clinical aplications. Boca Raton, FL: CRC Press; 2013. p. 9-42.

Pham T, Lau ZJ, Chen SHA, Makowski D. Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors (Basel). 2021;12(21):3998. Disponible en: https://doi.org/10.3390/s21123998

Tarvainen MP, Lipponen J, Niskanen JP, Ranta-aho PO. Kubios HRV Software (version 3.5). User’s guide. Kuopio: University of Eastern Finland; 2021.

Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol. 2014;5:1040. Disponible en: https://doi.org/10.3389/fpsyg.2014.01040

Stein PK, Reddy A. Non-linear heart rate variability and risk stratification in cardiovascular disease. Indian Pacing Electrophysiol J. 2005;5(3):210-20.

Balanescu S, Corlan AD, Dorobantu M, Gherasim L. Prognostic value of heart rate variability after acute myocardial infarction. Med Sci Monit. 2004;10(7):CR307-15.

La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart- rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Re f lexes Af ter Myocardial Infarction) investigators. Lancet. 1998;351(9101):478-84. Disponible en: https://doi.org/10.1016/s0140-6736(97)11144-8

Sosnowski M, MacFarlane PW, Czyz Z, Skrzypek-Wanha J, Boczkowska-Gaik E, Tendera M. A ge-adjustment of HRV measures and its prognostic value for risk assessment in patients late after myocardial infarction. Int J Cardiol. 2002;86(2-3):249-58. Disponible en: https://doi.org/10.1016/s0167-5273(02)00301-7

Tapanainen JM, Bloch P, Køber L, Torp-Pedersen C, Mäkikallio T, Still A, et al. Fractal analysis of heart rate variability and mortality after an acute myocardial infarction. Am J Cardiol. 2002;90(4):347-52. Disponible en: https://doi.org/10.1016/s0002-9149(02)02488-8

Lanza GA, Cianflone D, Rebuzzi AG, Angeloni G, Sestito A, Ciriello G, et al. Prognostic value of ventricular arrhythmias and heart rate variability in patients with unstable angina. Heart. 2006;92(8):1055-63. Disponible en: https://doi.org/10.1136/hrt.2005.070714

Kiviniemi AM, Tulppo MP, Wichterle D, Haut ala AJ, Tiinanen S, Seppänen T, et al. Novel spectral indexes of heart rate variability as predictors of sudden and non-sudden cardiac death after an acute myocardial infarction. Ann Med. 2007;39(1):54-62. Disponible en: https://doi.org/10.1080/07853890600990375

Neves VR, Takahashi AC, do Santos-Hiss MD, Kiviniemi AM, Tulppo MP, de Moura SC, et al.

Linear and nonlinear analysis of heart rate variability in coronary disease. Clin Auton Res. 2012;22(4):175-83. Disponible en: https://doi.org/10.1007/s10286-012-0160-z

Mirescu SC, Harden SW. Nonlinear dynamics methods for assessing heart rate variability in patients with recent myocardial infarction. Romanian J Biophys. 2012;22(2):117-24.

Routledge FS, Campbell TS, McFetridge-Durdle JA, Bacon SL. Improvements in heart rate variability with exercise therapy. Can J Cardiol. 2010;26(6):303-12. Disponible en: https://doi.org/10.1016/s0828-282x(10)70395-020.

Kubios Oy. Preprocessing of HRV data. Kuopio: University of Eastern Finland; [citado marzo 10 de 2022]. Disponible en: https://www.kubios.com/hrv-preprocessing/

van Doorn J, van den Bergh D, Böhm U, Dablander F, Derks K, Draws T, et al. The JASP guidelines for conducting and reporting a Bayesian analysis. Psychon Bull Rev. 2021;28(3):813-26. Disponible en: https://doi.org/10.3758/s13423-020-01798-5

van Doorn J, Wagenmakers EJ, editores. Bayesian Inference in JASP: a guide for students. Mark A Goss-Sampson; 2020 [citado marzo 10 de 2022]. Disponible en: http://static.jasp-stats.org/Manuals/Bayesian_Guide_v0.12.2.pdf.

Asociación Médica Mundial (AMM). Declaración de Helsinki de la AMM - Principios éticos para las investigaciones médicas en seres humanos. Fortaleza: 64ª Asamblea general de la AMM; 2013 [citado marzo 10 de 2022]. Disponible en: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos

Colombia. Ministerio de Salud. Resolución 8430 de 1993 (octubre 4): Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. Bogotá D.C.; 1993.

Comité de Ética para la Investigación Científica, Facultad de Salud Universidad Industrial de Santander (UIS). Guía para la elaboración de las consideraciones éticas en la investigación con seres humanos/no humanos. Bucaramanga: UIS; [citado marzo 13 de 2022]. Disponible en:

https://www.uis.edu.co/webUIS/es/academia/facultades/salud/comiteEtica/documentos/guias/ consideracionesEticas.pdf.

Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039-49. Disponible en: https://doi.org/10.1152/ajpheart.2000.278.6.H2039

Singh B, Singh M, Banga VK. Sample Entropy based HRV: Effect of ECG Sampling Frequency. Biomedical Science and Engineering. 2014;2(3):68-72. Disponible en: https://doi.org/10.12691/bse-2-3-3

Yentes JM, Hunt N, Schmid KK, Kaipust JP, McGrath D, Stergiou N. The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Ann Biomed Eng. Disponible en: 2013;41(2):349-65. https://doi.org/10.1007/s10439-012-0668-3

Cárdenas-Granados RD. Entropía aproximada y muestral de la variabilidad de la frecuencia cardíaca en electrocardiogramas cortos y largos de hombres jóvenes [tesis de maestría]. Bogotá D.C.: Universidad Nacional de Colombia; 2016 [citado marzo 13 de 2022]. Disponible en: https://repositorio.unal.edu.co/handle/unal/58114.

Cygankiewicz I, Zareba W. Heart rate variability. Handb Clin Neurol. 2013;117:379-93. Disponible en: https://doi.org/10.1016/B978-0-444-53491-0.00031-6.

Feher J. Regulation of Arterial Pressure. En: Quantitative Human Physiology. San Diego: Elsevier Inc; 2012. p. 538-48.

Nunan D, Sandercock GR, Brodie DA. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin Electrophysiol. 2010;33(11):1407- 17. Disponible en: https://doi.org/10.1111/j.1540-8159.2010.02841.x

Caicedo-Ochoa EY, Urrutia-Gómez JA. Relación entre el control autonómico cardíaco e índices antropométricos normales en hombres jóvenes. Tunja, Boyacá, Colombia, 2014. MéD UIS.2015;28(3):31-8. Disponible en: http://dx.doi.org/10.18273/revmed.v28n3-2015004

Brennan M, Palaniswami, Kamen P. Do existing measures of Poincaré plot geometry ref lect nonlinear features of heart rate variability? IEEE Trans Biomed Eng. 2001;48(11):1342-7. Disponible en: https://doi.org/10.1109/10.959330

How to Cite

1.
Cárdenas Granados RD, Chaustre Ruiz DM. Linear and nonlinear analysis of short-term heart rate variability in patients with coronary artery disease. Rev. Colomb. Med. Fis. Rehabil. [Internet]. 2022 Jun. 29 [cited 2024 May 19];32(1):11-23. Available from: https://revistacmfr.org/index.php/rcmfr/article/view/315

Downloads

Download data is not yet available.

Published

2022-06-29

Issue

Section

Original articles
Crossref Cited-by logo
QR Code