Hand Rehabilitation with robotic orthosis

Authors

  • José Fernando Gómez Rendón Médico Fisiatra, Fundación Centro de Investigación Biomédica, Electrónica y Robótica en Manizales, con sigla F-CIBER-M317.
  • Juan David Moreno Arango Médico e ingeniero electrónico, Fundación Centro de Investigación Biomédica, Electrónica y Robótica en Manizales, con sigla F-CIBER-M317.
  • Gilberto Andrés Gil Henao Médico Ortopedista, Cirujano de Mano Fundación Centro de Investigación Biomédica, Electrónica y Robótica en Manizales, con sigla F-CIBER-M317.
  • Jimena Becerra Velásquez Fisioterapeuta, Fundación Centro de Investigación Biomédica, Electrónica y Robótica en Manizales, con sigla F-CIBER-M317.
  • Carlos Humberto Orozco Téllez Médico Epidemiólogo, Fundación Centro de Investigación Biomédica, Electrónica y Robótica en Manizales, con sigla F-CIBER-M317.

DOI:

https://doi.org/10.28957/rcmfr.v26n2a7

Keywords:

exoesqueleto, órtesis robótica, escala DASH, escala EVA, escala ASIA

Abstract

Introduction: This research corresponds to a descriptive study on innovation of robotic technologies developed in Colombia, applied to the process of rehabilitation in patients with functional loss of the hand due to traumatic events.

Materials and methods: two patients were selected: Patient with traumatic cervical spinal cord injury level C6 and patient with posttraumatic stiffness secondary to hand breakage.

Results: Using the hand exoskeleton in patients with cervical spinal cord injury improved functionality according to the DASH scale, decreasing pain intensity and reported improvement of their self-esteem and quality of life. In the patient with broken hand after a rehabilitation process assisted by robotic orthotic, functional recovery was evidenced by DASH scale also improvement on arcs joint mobility and pain decreased intensity according to visual analog scale.

Discussion: We conclude that the use of robotic orthotic hand improved functionality and decreased pain in both patients. Level of evidence: The purpose of the study is to generate clinical evidence (level III) of the usefulness of robotic orthosis in solving global public health problems associated with this type of disability.

References

1. WHO. World Health Organization, Word Report on Disability. 2011.

2. Gutenbrunner C, Abuchaibe S, Lugo LH, Escobar LM. Libro Blanco de Medicina Física y Rehabilitación en América Latina. Medellín - Colombia. 2012.

3. Van den Berg M.E.L. Castellote J.M. Mahillo Fernandez I. de Pedro Cuesta J. Incidence of Spinal Cord Injury Worldwide: A Systematic Review. Neuroepidemiology. 2010.

4. R A Cripps, B B Lee, P Wing, E Weerts, J Mackay and D Brown. A global map for traumatic spinal cord injury epidemiology: towards a living data repository for injury prevention. Spinal Cord. 2011.

5. NSCISC National Spinal Cord Injury Statistical Center. 2012 Annual Report. Complete Public Versión. UAB Medicine, SCIMS and NIDRR.

6 NSCISC National Spinal Cord Injury Statistical Center. Spinal Cords Injury Facts and Figures at a Glance. February, 2013.

7. de Putter CE, Selles RW, Polinder S, et al. Economic impact of hand and wrist injuries: health-care costs and productivity costs in a population-based study. J Bone Joint Surg Am 2012;94(9):e56.

8. Colombia, Dirección de Censos y Demografía del DANE. Informe RLCPD. Marzo, 2010.

9. Gallagher KG, Blackmore SM. Intra-articular hand fractures and joint injuries: part II – therapist’s management. In: Skirven TM, Osterman AL, Fedorczyk J, et al, editors. Rehabilitation of the hand and upper extremity. 6th edition. Philadelphia: Elsevier Mosby; 2011; p. 417-38.

10. Balaram AK, Bednar MS. Complications after the fractures of metacarpal and phalanges. Hand Clin 2010; 26(2):169-77.

11. Hayes, Inc. Medical Technology Directory. Continuous Passive Motion (CPM) Following the Micro fracture Procedure. Hayes Inc.: Lansdale, PA: June 14, 2011a.

12. Hayes, Inc. Medical Technology Directory. Mechanical Stretching Devices for the Treatment of Joint Contractures of the Extremities. Hayes Inc.: Lansdale, PA: August 8, 2011b.

13. Daniel V. Díaz, Silvia S. Moreno. Sistemas Inteligentes en Exoesqueletos de Rehabilitación. Universidad Autónoma del Estado de Hidalgo. México. 2013;1(1).

14. Manuel A. Chávez y colaboradores. Exoesqueletos para potenciar las capacidades humanas y apoyar la rehabilitación. Revista Biomédica. Universidad CES, Medellín, Colombia. 2010;4(7).

15. Mozaffari F. M., Troncossi M., Parenti C.V., State of the art of Hand Exoskeleton Systems. Universitá di Bologna. 2011.

16. Won Hyuk Chang and Yun Hee kIM. Robot assisted Therapy in Stroke Rehabilitation. Journal of Stroke. Sep 2013;15(3):174-181.

17. Moreno A, Juan. Moreno A, Julián. Prototipo Exoesqueleto de Mano y Muñeca con Aplicaciones de Rehabilitación y Asistencia EMMRA -1. Iberdiscap 2015; págs. 219.222.

How to Cite

1.
Gómez Rendón JF, Moreno Arango JD, Gil Henao GA, Becerra Velásquez J, Orozco Téllez CH. Hand Rehabilitation with robotic orthosis. Rev. Colomb. Med. Fis. Rehabil. [Internet]. 2017 Feb. 16 [cited 2024 May 18];26(2):174-9. Available from: https://revistacmfr.org/index.php/rcmfr/article/view/180

Downloads

Download data is not yet available.

Issue

Section

Analysis and perspective
QR Code

Some similar items: