Changes in body composition in patients with ischemic disease undergoing phase II cardiac rehabilitation

Authors

  • Daniela Hinestroza Córdoba Residente de tercer año de Medicina Física y Rehabilitación, Universidad Militar Nueva Granada. Servicio Medicina Física y Rehabilitación, Hospital Militar Central, Bogotá D. C., Colombia. https://orcid.org/0000-0002-5286-0200
  • Oscar Mauricio Álvarez Fernández Especialista en Medicina Física y Rehabilitación. Jefe del Servicio Rehabilitación Cardíaca, Hospital Militar Central. Docente Medicina Física y Rehabilitación, Universidad Militar Nueva Granada, Bogotá D. C., Colombia https://orcid.org/0000-0002-5974-3541
  • María Liliana Ibarra Quintero Fisioterapeuta del Servicio Rehabilitación Cardíaca, Hospital Militar Central, Bogotá D. C., Colombia. https://orcid.org/0000-0002-5392-5176

DOI:

https://doi.org/10.28957/rcmfr.v31n2a5

Keywords:

Ischemic heart disease, cardiac rehabilitation, body composition, electrical impedance, cardiovascular risk factors

Abstract

Introduction. Ischemic heart disease is the leading cause of mortality in Colombia; therefore, cardiac rehabilitation services play a fundamental role in secondary prevention. Overweight and obesity are factors that can be intervened by body composition through electrical bioimpedance to discriminate the total body water, extracellular water, lean body mass, fat mass and visceral fat, the latter parameter being one of the predictors of new cardiovascular events.

Objective. To analyze changes in body composition in patients with ischemic disease.

Materials and methods: Retrospective analytical study conducted on 34 patients diagnosed with ischemic heart disease, who attended in person phase II cardiac rehabilitation at the Central Military Hospital (Hospital Militar Central) in Bogota, Colombia, between August 3, 2020 and August 4, 2021. A probabilistic sampling was applied.

Results. The median age of the participants was 58 years and the majority of them were men (88.2%). Regarding the anthropometric measurements, the initial median weight was 69.3 kg and the final was 68.7 kg (p=0.025); the initial median of the body mass index (BMI) was 26.3 kg/m2 and the final, 26.1 kg/m2 (p=0.003); the initial median abdominal perimeter was 91.5 cm and the final was 89.5 cm (p=0.000), and the initial median hip circumference was 98.5 cm and the final, 94 cm (p=0.000). In the body composition it was found that the fat mass decreased: the median went from 7.3 kg/m2 to 6.0 kg/m2 (p=0.002), as well as the visceral fat, whose median went from 3.4 L to 3.1 L (p=0.003). The median physical capacity increased from 7.2 METs to 10.4 METs (p=0.000).

Conclusion. The patients with a diagnosis of ischemic heart disease who attended cardiac rehabilitation at the Central Military Hospital presented statistically significant changes between admission and the end of the program in weight, BMI, abdominal and hip circumference, fat mass, visceral fat, and physical capacity.

References

Gabriel-Costa D. The pathophysiology of myocardial infarction-induced heart failure. Pathophysiology. 2018;25(4):277-84. Disponible en: https://doi.org/10.1016/j.pathophys.2018.04.003.

Zipes DP, Libby P, Bonow RO, Mann DL, Tomaselli GF, editors. Braunwald. Tratado de cardiología. 11 ed. Barcelona: Elsevier; 2019.

Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119-77. Disponible en: https://doi.org/10.1093/eurheartj/ehx393.

Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent st-segment elevation: Task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(3):267-315. Disponible en: https://doi.org/10.1093/eurheartj/ehv320

Castro-Dominguez Y, Dharmarajan K, McNamara RL. Predicting death after acute myocardial infarction. Trends Cardiovasc Med. 2018;28(2):102-9. Disponible en: https://doi.org/10.1016/j.tcm.2017.07.011

Montrief T, Davis W T, Koyfman A , Long B. Mechanical, inf lammator y, and embolic complications of myocardial infarction: An emergency medicine review. Am J Emerg Med. 2019;37(6):1175-83. Disponible en: https://doi.org/10.1016/j.ajem.2019.04.003

Harrington DH, Stueben F, Lenahan CMD. ST-Elevation Myocardial Infarction and Non-ST- Elevation Myocardial Infarction: Medical and Surgical Interventions. Crit Care Nurs Clin North Am. 2019;31(1):49-64. Disponible en: https://doi.org/10.1016/j.cnc.2018.10.002

Benjamín EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56-e528. Disponible en: https://doi.org/10.1161/CIR.0000000000000659

Colombia. Ministerio de Salud y Protección social (Minsalud). Guía de Práctica Clínica para el Síndrome Coronario Agudo. Bogotá D.C.: Minsalud; 2013.

Doimo S, Fabris E, Piepoli M, Barbati G, Antonini-Canterin F, Bernardi G, et al. Impact of ambulatory cardiac rehabilitation on cardiovascular outcomes: A long-term follow-up study. Eur Heart J. 2019;40(8):678-85. Disponible en: https://doi.org/10.1093/eurheartj/ehy417

Thomas RJ, Beatty AL, Beckie TM, Brewer LC, Brown TM, Forman DE, et al. Home-Based Cardiac Rehabilitation: A Scientific Statement From the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology. J Am Coll Cardiol. 2019;74(1):133-53. Disponible en: https://doi.org/10.1016/j.jacc.2019.03.008

Eickmeyer SM, Barker KD, Sayyad A, Rydberg L. The Rehabilitation of Patients With Advanced Heart Failure After Left Ventricular Assist Device Placement: A Narrative Review. PM R. 2019;11(1):64-75. Disponible en: https://doi.org/10.1016/j.pmrj.2018.05.027

Regan EW, Handlery R, Beets MW, Fritz SL. Are Aerobic Programs Similar in Design to Cardiac Rehabilitation Beneficial for Survivors of Stroke? A Systematic Review and Meta-Analysis. JAHA. 2019;8(16). Disponible en: https://doi.org/10.1161/JAHA.119.012761

Álvarez O. Guía de manejo: rehabilitación cardíaca domiciliaria. Bogotá D.C.: Hospital Militar Central; 2020.

Hansen D, Mathijs W, Michiels Y, Bonné K, Alders T, Hermans A, et al. Phase III multidisciplinary exercise-ased rehabilitation is associated with fewer hospitalizations due to adverse cardiovascular events in coronary artery disease patients. Eur J Prev Cardiol. 2020;zwaa038. Disponible en: https://doi.org/10.1093/eurjpc/zwaa038

Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111-88. Disponible en: https://doi.org/10.1093/eurheartj/ehz455

Tamis-Holland JE, Jneid H, Reynolds HR, Agewall S, Brilakis ES, Brown TM, et al. Contemporary Diagnosis and Management of Patients With Myocardial Infarction in the Absence of Obstructive Coronary Artery Disease: A Scientific Statement From the American Heart Association. Circulation. 2019;139(18):e891-908. Disponible en: https://doi.org/10.1161/CIR.0000000000000670

Cárdenas-Fuentes G, Bawaked RA, Martínez-González MÁ, Corella D, Subirana-Cachinero IS, Salas-Salvadó J, et al. Association of physical activity with body mass index, waist circumference and incidence of obesity in older adults. Eur J Public Health. 2018;28(5):944-50. Disponible en: https://doi.org/10.1093/eurpub/cky030

Amato MC, Guarnott a V, Giordano C. Body composition assessment for the definition of cardiometabolic risk. J Endocrinol Invest. 2013;36(7):537-43. Disponible en: https://doi.org/10.3275/8943

Schousboe JT, Kats AM, Langsetmo L, Vo TN, Taylor BC, Schwartz AV, et al. Central obesity and visceral adipose tissue are not associated with incident atherosclerotic cardiovascular disease events in older men. J Am Heart Assoc. 2018;7(16):e009172. Disponible en: https: //doi.org/10.1161/JAHA.118.009172

Kouvari M, Panagiotakos DB, Chrysohoou C, Notara V, Georgousopoulou EN, Yannakoulia M, et al. A sex-specific evaluation of predicted lean and fat mass composition and cardiovascular disease onset and progression: A combined analysis of the ATTICA and GREECS prospective epidemiological studies. Obes Res Clin Pract. 2019;13(5):469-77. Disponible en: https://doi.org/10.1016/j.orcp.2019.09.005

Kouvari M, Chrysohoou C, Dilaveris P, Georgiopoulos G, Magkas N, Aggelopoulos P, et al. Skeletal muscle mass in acute coronar y syndrome prognosis: Gender-based analysis from Hellenic Heart Failure cohort. Nutr Metab Cardiovasc Dis. 2019;29(7):718-27. Disponible en: https://doi.org/10.1016/j.numecd.2019.03.011

Jensen B, Moritoyo T, Kaufer-Hor witz M, Peine S, Norman K, Maisch MJ, et al. Ethnic differences in fat and muscle mass and their implication for interpretation of bioelectrical impedance vector analysis. Appl Physiol Nutr Metab. 2019;44(6):619-26. Disponible en: https://doi.org/10.1139/apnm-2018.0276

Peine S, Knabe S, Carrero I, Brundert M, Wilhelm J, Ewert A, et al. Generation of normal ranges for measures of body composition in adults based on bioelectrical impedance analysis using the seca mBCA. Int J Body Compos Res. 2013;11(3-4):67-76.

Bosy-Westphal A, Schautz B, Later W, Kehayias JJ, Gallagher D, Müller MJ. What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in a healthy adult population. Eur J Clin Nutr. 2013;67(Suppl 1):S14-21. Disponible en: https://doi.org/10.1038/ejcn.2012.160

Bosy-Westphal A, Jensen B, Braun W, Pourhassan M, Gallagher D, Müller MJ. Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. Eur J Clin Nutr. 2017;71(9):1061-7. Disponible en: https: //doi.org/10.1038/ejcn.2017.27

Aleixo GFP, Shachar SS, Nyrop KA, Muss HB, Battaglini CL, Williams CL. Bioelectrical impedance analysis for the assessment of sarcopenia in patients with cancer: a systematic review. Oncologist. 2020;25(2):170-82. Disponible en: https://doi.org/10.1634/theoncologist.2019-0600

Czeczelewski, Czeczelewski J,Czeczelewska E, Galczak-Kondraciukb A. Association of body composition indexes with cardio-metabolic risk factors. Obesity Medicine.2020;17: 100171. Disponible en: https://doi.org/10.1016/j.obmed.2019.100171

Nalepa D, Czarkowska M, Za?uska W, Jakubowska K, Chru?ciel P. Electrical bioimpedance in patients after ischemic stroke, a civilization disease. Ann Agric Environ Med. 2019;26(1):46-50. Disponible en: https://doi.org/10.26444/aaem/84849

Coriolano J, Queiroz W, Andrade K, Coriolano M. Repercussions of a very active life style in body composition and cardiometabolic parameters of the elderly in a sample of the population of the mid region of the city of recife/Brazil. European Journal of Public Health. 2020; 30(Suppl 2):ckaa040-045. Disponible en: https://doi.org/10.1093/eurpub/ckaa040.045

How to Cite

1.
Hinestroza Córdoba D, Álvarez Fernández OM, Ibarra Quintero ML. Changes in body composition in patients with ischemic disease undergoing phase II cardiac rehabilitation. Rev. Colomb. Med. Fis. Rehabil. [Internet]. 2022 Feb. 18 [cited 2024 May 19];31(2). Available from: https://revistacmfr.org/index.php/rcmfr/article/view/327

Downloads

Download data is not yet available.

Published

2022-02-18

Issue

Section

Original articles
Crossref Cited-by logo
QR Code

Some similar items: